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Abstract— In this paper, we present a new model of quantum 

walk, which is constructed directly from quantum Bernoulli 

noises. We examine its basic properties, and two representation 

results are obtained of the walk. 
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I. INTRODUCTION 

As quantum analogs of classical random walks, quantum 

walks were introduced almost three decade ago [12,13], 

and they have found numerous applications in quantum 

information processing and communication science [15]. 

 Recently,  by  using quantum walks with finite number 

degrees of freedom, Konno has introduced a new 

time-series model and shown its interesting properties 
[16]. 

Quantum Bernoulli noises (QBN) are the family 

of annihilation and creation operators acting on 

Bernoulli functionals, which satisfy an 

anti-commutation relation (ACR) in equal time, and 

can provide an approach to the effects of environment 

on an open quantum system. In 2016, Wang and Ye 

introduced a quantum walk model in terms of quantum 

Bernoulli noises [14], and showed its interesting 

properties, one of which says that at some special 

initial states this walk has the same limit probability 

distribution as the classical random walk . 

  The quantum walk introduced by Wang and Ye actually 

uses the following operator pairs  IL kkk  

2
1  

an  IR kkk  

2
1  as its coin operators, where 

k and 
 k

 are annihilation and creation operators acting 

on Bernoulli functionals, which form quantum Bernoulli 

noises. In this paper, we present a new model of quantum 

walk, which is constructed directly from quantum 

Bernoulli noises. We examine its basic properties, and 

two representation results are obtained of the walk. 

Notation and conventions. Throughout this paper, Z 

always denotes the set of all integers, while N means  
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the Set of all nonnegative integers. We denote by Γ the 

finite power set of N, namely 

      Γ = { σ | σ ⊂ N and # σ < ∞ },          (1.1) 

where #σ means the cardinality of σ. Unless otherwise 

stated, letters like j, k and n stand for nonnegative 

integers, namely elements of N. 

II. QUANTUM BERNOULLI NOISES 

In this section, we briefly recall quantum Bernoulli noises 

(see [8] for details). 

Let  -1,1
N

 be the set of all mapping  

 -1,1 ,N： and  
0n n

 the sequences of canonical 

projections on  given by 

             , . (2.1)n n      

Let be the  -field on   generated by the sequences  
0nn , 

and  
0nnp a given sequences of positives numbers with the 

property that 10  np  for all 0n . Then there exists a 

unique probability measure P on   such that 

j

j

1
1 2k

1 2
1 2, 1 2 k j

j 1

, {( , , } p (1 ) 2.2n n nk jP p








 （ ） ， ） （ ）




     

for    kjNn jj  11,1, with
ji nn  when ji   

and .1 kwithNk Thus one has a probability 

measure space  P，， , which is referred to as  the 

Bernoulli space and random variables on it are known 

as Bernoulli functionals. 

Let  
0n n

Z Z


 be the sequences of Bernoulli 

functionals defined by  

, 0, 2.3
2

n n n
n

n n

q p
Z n

q p

 
  （ ）


 

where 1 .n nq p  Clearly  
0n n

Z Z


 is an independent  

sequence of random variables on the probability 

measure space  P，， . 

    Let H be the space of square integrable  complex-valued 

Bernoulli functionals, namely 

 2 , , (2.4)H L P   ，  

we denote by ,  the usual inner product of the space H , 

and by ǁ · ǁ the corresponding norm.  It is known that Z has 

the chaotic representation property, which means that the 

family   |Z  forms an orthonormal basis (ONB) of 

H, where 1Z  and 
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)5.2(.,, 







j

jZZ  

In the following, we call   |Z  the canonical 

ONB of H. Clearly H  is infinitely dimensional since 

  |Z  is countably infinite. 

Lemma 2.1. [8] For each Nk , there exists a bounded 

operator 
k  on H  such that 

  \1 , , (2.6)k kZ k Z      

where σ \ k = σ \ {k} and 1σ(k) the indicator of σ as a 

subset of N . 

Lemma 2.2. [8] Let Nk . Then 
 k
, the adjoint of operator 

k , has following property: 

 1-1 , , (2.7)
k kZ k Z

        

where σ ∪ k = σ ∪ {k}. 

Remark 2.1. The family  
0

,



kkk

 is called quantum 

Bernoulli noises, while 
k  and  k

 are known as the 

annihilation and creation operators, respectively. 

Lemma 2.3. [8]  Let ,k lN. Then, it holds true that  

, , , ( ) (2.8)k l l k k l l k k l l k k l                      

and 

0 . (2.9)n n n n n n n nand I               

Here I is the identity operator on H . 

III. DEFINITION OF THE QUANTUM WALK 

In this section, we define our quantum walk and examine 

its basic properties. 

Let  HZl ,2  be the space of square summable functions 

defined on Z and valued in H , namely 
2

2 ( , ) { : | || ( ) || }. (3.1)
x

l Z H Z H x




      

Then  HZl ,2  remains a complex Hilbert space, whose 

inner product 
 HZl ,2

,  is given by 

       2

2

,
, , , , 3.2

l Z H
x

x x l Z H




      
（ ）

， ，

 

where ，  denotes the inner product of H as indicated in 

section II. By convention, we denote by  HZl ,2||||   the norm 

induced by  2 ,l Z H
 ， . 

  We now state the definition of our quantum walk as 

follows. The walk takes  HZl ,2  as its state space and its 

states satisfy the following evolution equation 

1( ) ( 1) ( 1), (3.3)n n n n nx x x

         

Zx , 0n , where n  denotes the state of the walk at 

time 0n  and in particular 0  denotes the initial state of 

the walk.  

It is well known that 2 2( , ) ( ) .l Z H l Z H  This just 

means that )(2 Zl  describes the position of the walk, while 

H  describes its internal degrees of freedom. By convention, 

H is called the coin space of the walk. Clearly our walk has 

infinitely many internal degrees of freedom since its coin 

space H  is infinitely dimensional. 

Theorem 3.1. Let 0n   and 
2( , )l Z H . If  a  

function : Z H  satisfies that 

( ) ( 1) ( 1), . (3.4)n nx x x x Z          

Then 
2( , )l Z H and 2 2( , ) ( , )

|| || || || .
l Z H l Z H

    

Proof. According  to  formula 0n n n n

       and  

n n n n I       , we have  

2

2

|| || ( 1) ( 1), ( 1) ( 1)

[ ( 1), ( 1) + ( 1) , ( 1) ]

( ), ( ) ( ), ( )

( ), ( ) ( )

= || || ,

n n n n
x x

n n n n
x

n n n n
x x

n n n n
x

x

x x x x

x x x x

x x x x

x x

 
 

 


 



 
 

 


 







                

            

          

       



which together with 2( , )l H   implies that 

2( , )l Z H  and 
2 2( , ) ( , )

|| || || || .
l Z H l Z H

    

Theorem 3.2. Let 0n  . Then there exists a unitary 

self-adjoint operator 
2 2: ( , ) ( , )nw l Z H l Z H  such 

that  

[ ]( ) ( 1) ( 1), . (3.5)n n nw x x x x Z          

Proof.  For each 
2( , )l Z H , we define the 

function : Z H  as 

( ) ( 1) ( 1), ,n nx x x x Z

          

By Theorem 3.1, we have 2( , )l Z H   and  

2 2( , ) ( , )
|| || || ||

l Z H l Z H    

Thus we can define an isometric operator 
2 2: ( , ) ( , )nw l Z H l Z H   

such that 2, ( , ),nw l Z H    

which means the
nw satisfies (3.5). 

Next, we consider the adjoint nw 
of 

nw . Let 

2( , )l Z H . Then, for any x Z  and   , 

we define a function 
2( , )l Z H   such that 

,
( )

0, , .

y x
y

y x y Z

 
  

 

  

Which gives   
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2

2

( , )

( , )

[ ]( ), ,

,

( 1), ( 1),

( 1) ( 1), .

n n l Z H

n l Z H

n n

n n

w x Z w

w

x x

x x







 



 





   

  

         

        

Thus 
nw  is self-adjoint. 

Finally we prove that 
nw  is a unitary operator. Since 

nw is an isometric operator, thus we need only to prove that 

.n nw w I   Let 2( , )l Z H and
nw    . Then,  

[ ]( ) ( 1) ( 1)

( ) ( )

( ) ( )

( ),

n n n

n n n n

n n n n

w x x x

x x

x

x



 

 

        

       

      

 

 

where x Z . Thus 
nw  = , which together with 

nw     and the arbitrariness of 2( , )l Z H implies 

that n nw w I  . This completes the proof. 

By using Theorem 3.2, one can easily come to the next 

result. 

Theorem 3.3.  Our quantum walk has a unitary 

representation of the following form 

1

0
0

( ) , 1, (3.6)
n

n k
k

w n




     

where 
2 2: ( , ) ( , )kw l Z H l Z H is a unitary operator 

as indicated in (3.5). 

Proof.  Combining (3.3) with (3.5) , we simply get 

1 1( ) [ ]( ), , 1n n nx w x x Z n      ， 

which implies (3.6). 

IV.  REPRESENTATION IN TENSOR SPACE. 

It is well known that 2 2( , ) ( )l Z H l Z H  . In this part, we 

show a representation of our walk in 
2( )l Z H . 

Definition 4.1. For
2( ) ,f l Z and H   we define a 

function , :f Z H  as   

, ( ) , . 4.1f f x x Z   （ ）   

It is well know that  2

, | ( ),f f l Z H     is total in 

2( , ).l Z H  

Lemma 4.1. There exist a unitary linear isomorphism 

mapping 2 2: ( , ) ( )J l Z H l Z H  satisfying that 

2

, , ( ), . 4.2fJ f f l Z H     （ ）    

This lemma builds a bridge from
2( , )l Z H to 

2( ) .l Z H Through this lemma we come to another 

conclusion. 

Lemma 4.2. Define the operator 
2 2: ( ) ( )l Z l Z  as : 

2[ ]( ) ( 1), , ( ). 4.3f x f x x Z f l Z    （ ）  

Then  is a unitary operator and 

1| |,x x
x

   


   

where  | }x x Z is a OBN in 
2( )l Z . 

The following theorem describes the unitary operator 

on 
2( )l Z H that corresponds to the operator 

nw on 

2( , )l Z H . 

Theorem 4.1. For each 0n  , there exist a unitary 

operator 
nT  on 

2( )l Z H , such that  

1 1

1 1[| | | | ]. (4.4)

n n n n

x x n x x n
x

T Jw J   



 


    

     

 

   

 

Proof. For each 
2( )f l Z H   , we have 

  1

, ,fJ f      thus for all ,x Z  

 

1

1

, , ,

1

, ,

, ,

( ) ( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

[( )( )] [( )( )]

( ) ( )

[ ]( ).

n n

n n

n f n f n f

n n

n n

n n

f f

f f

w x x x

f x f x

f x f x

f x f x

x x

x

 

 







 

 

 

        

     

     

   

  

  

  

   

   

 

 

   
 

Then 1, , ,n n
n f f f

w       
   , which implies that 

     

  

1

1

,

, ,

1

1

1

( ) ( )

( )

.

n n

n n n f

f f

n n

n n

n n

T f Jw J f Jw

J

f f

f f

f

 



 

 

 

 

    

  

   

     

    



   

 

   

   

  

Therefore 
1 1

n n n nT Jw J         . 

We now describe our walk in the tensor space 
2( ) .l Z H  Let 

2 ( )nF l Z H  be such that 

n nF J  , where 
n  is the state of the walk at time 

0n  . 

Then one has the following relations 

1 0. (4.5)n n nF T F n  ，  

Theorem 4.2. The quantum walk has the following 

representation in 
2( )l Z H : 
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1

1 1 0
0

( [| | | | ]) , 1. (4.6)
n

n x x k x x k
xk

F F n




 


          

Proof.  From (4.4) and (4.5), we can immediately get (4.6). 
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